
The Alibaba Global Mathematics Competition (Hangzhou 2018) consists of 3 problems.
Each consists of 3 questions: a, b, and c.

This document includes answers for your reference. It is important to note that there
are multiple answers to each question. If you submitted different answers, you may
still get points. We try to write the answers rather thoroughly. It does not mean your
answers need to be as detailed. This document is neither a rubric nor a grading guide.
The authors of these answers are not the graders.

(correction 11 )
Problem 1.

a. During the Alibaba 11.11 Shopping Festival, Store A issues “5 RMB off 60 RMB” stackable
coupons. “Stackable” means the multiple coupons can be applied to a single order. For example,
an order of 120 RMB at list price, can be reduced to 110 RMB by applying two such coupons.

Store A is part of Tmall.com. Tmall.com issues a “60 RMB off 299 RMB” coupon, limited to
one per order. This coupon applies to the list price and is stackable with any individual store
coupons. For example, to a product listed at 299 RMB in a Tmall.com store, one pays only 299
RMB - (the store discount based on 299 RMB) - 60 RMB. If the total list price is slightly below
299RMB, customers often adds filler item(s) (such as socks or tissues) from other Tmall.com
stores to reach 299RMB and then apply the coupon.

Xiao Ming will buy a 250 RMB pair of headphones and a 600 RMB speaker set from Tmall.com
Store A. Xiao Ming has unlimited access to the two types of coupons described. What is the
least amount that he must pay?

Answer: 709 RMB. To get this answer, we have used filler items from other
store(s). The answer will be reduced to 705 RMB if there are filler items solely
from Store A (but this is less likely to hold in practice.) Below, we explain the steps
to get 709 RBM.

Below we compare buying both items in one order and buying them in two separate orders. The
latter at 709 is cheaper.

Buy the two items in one order: The final cost is

250 (headphones’ list price) + 600 (speaker set’s list price)

− 14× 5 apply (
⌊
250+600

60

⌋
= 14 “5-off-60” store coupons)

− 60 (shopping cart coupon)

= 720.

Buy the two items separately: The two orders cost 709, which breaks down to the following
two orders: The headphone pair costs

250− 4× 5 (apply b 25060 c = 4 store coupons)

+ 49 (filler items to reach 299 total list price)− 60 (shopping cart coupon)

= 219. (1)

1change log: “50 RMB off 299 RMB” is corrected to “60 RMB off 299 RMB”
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If one forgets to use filler items, s/he will pay 250− 20 = 230, which is 11 more.

The speaker set costs

600− 10× 5 (apply b 60060 c = 10 store coupons)

− 60 (shopping cart coupon)

= 490. (2)

Hence all together 219 + 490 = 709 RMB.

b. You plan to open your own Tmall.com store, called “Store B,” selling the same headphones and
speaker set at the same list prices as Store A does. Your store sells only these two models.

You plan to issue “x RMB off 99 RMB” coupons, limited to one per order, where x is an integer
greater than 0 and smaller than 99. (For example, the discount for an order of 250 RMB is x
RMB, not 2x RMB). The Tmall.com “60 RMB off 299 RMB” coupon can be applied to purchases
at store B and can be stacked with your “x RMB off 99 RMB” coupon.

What is the minimal number x such that Xiao Ming can spend at least 1 RMB less on either the
250 RMB pair of the headphones or the 600 RMB speakers set in your Store B than in Store A?

What is the minimal number x such that Xiao Ming can spend at least 1 RMB less for buying
both the 250 RMB pair of the headphones and the 600 RMB speakers set in your Store B than
in Store A?

To clarify, the comparison is between the costs with the coupons applied optimally.

Answers: 1st question: 21 if using filler items from other stores and 25 if using
filler items from Store A; 2nd question: 36 for the 2nd question if using filler items
from other stores and 38 if using filler items from Store A. Below, we give the steps
assume we use filler items from other stores.

The 1st question. To buy a headphone pair in your store, one pays 250 − x + 49 (filler) −
60 (shopping cart coupon) = 239− x. Similarly, we get 540− x for the speaker set.

For your store to cost less on the headphone pair, x must satisfy 239− x ≤ 219 (1), or x ≥ 21.

For your store to cost less on the speaker pair, x must satisfy 540− x ≤ 490− 1 (2), or x ≥ 51.

When x = 21, we ensure the headphone pair to be cheaper, not the speaker set though.

The 2nd question. To buy both items in your store, it is cheaper to buy them in two separate
orders since we can apply the coupon to each order to get a total discount of 2x.

The part above has the formulas for the two orders: (239–x) and (540–x). Their total must
be cheaper than 709, which is the answer in part 2. That is (239–x) + (540–x) ≤ 709 − 1, or
x ≥ 35.5. Since x is an integer, we set x = 36 for this question2.

c. Mathematical modeling of product bundling. Suppose that the total costs of Item 1 and Item
2 are c1 and c2 (including production, storage, transportation, promotion, etc.), respectively.
When a customer visits the Tmall.com store, s/he perceives the values of these items at S1 and
S2, respectively. We suppose that S1 and S2 are random variables that are independently and
uniformly distributed on the intervals [0, u1] and [0, u2], respectively. There are three questions.

2Due to different understanding of the Chinese version, both 36 and 51 can be taken as the correct answer, because
there, one may understand that one might not have to buy both items in your store or both items in store A.
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1. What is the value for p1, the price for Item 1, that maximizes the expected profit for each
visiting customer? Here, assume that a visiting customer will purchase one piece of Item 1
if S1 ≥ p1, and if so, your profit is (p1 − c1). Please provide a formula. Similarly, what is
the value for p2 that maximizes the expected profit for each visiting customer?

Answer: optimal price p∗i = ui+ci
2 and expected profit r∗i = (ui−ci)2

4ui
for i = 1, 2.

Since the steps are identical for i = 1, 2, we drop i for brevity. Let R be the random variable
of profit, which depends on S. We calculate its expectation:

r = ES(R) = ES

(
(p− c)δbuy

)
= ES

(
(p− c)δp≤S

)
=

∫ u

0

(p− c)δp≤s ·
1

u
ds

= (p− c) s
u

∣∣∣s=u

s=p

=
(p− c)(u− p)

u
.

Alternatively, we can obtain the same expected profit directly as the product of profit,
(p− c), and the probability of buying, u−p

u .

The function r(p) := (p−c)(u−p)
u is a concave quadratic function, so its maximum is attained

at the point p∗ such that r′(p∗) = 0 if p∗ is on the interval of its allowed values, [0, u].
Indeed, r′(p∗) = 0 yields p∗ = u+c

2 , which is the maximizer if c ≤ u (otherwise, p∗ = u,
which is a trivial case).

With p∗ = u+c
2 , we get r∗ = r(p∗) = (u−c)2

4u .

2. Assume we are going to sell a bundle item including one unit of Item 1 and one unit of Item
2 at price p12. The total cost of this item is t(c1 + c2), where 0 < t < 1. Assume a visiting
customer will purchase one piece of this bundle if (S1 + S2) ≥ p12, and if so, your profit is
p12 − t(c1 + c2). Determine the price p12 to maximize the expected profit for each visiting
customer. Please provide a formula.

Answer: the price p12 that maximizes the expected return is

p∗12 =


1
3

(
c12 +

√
c212 + 6u1u2

)
, c12 ∈ [0, 32u1 − u2]

1
4

(
u1 + 2u2 + 2c12

)
, c12 ∈ [ 32u1 − u2, u2 −

1
2u1]

1
3 (u1 + u2 + 2c12), c12 ∈ [u2 − 1

2u1, u1 + u2].

Note that p∗12 is continuous with respect to c12, including one the boundary points of three
intervals, so one can include each boundary point in either or both of the neighboring
intervals.

Also note that the calculation is not unique. Students can find the right answer by drawing
a picture and using geometry.

No matter which approach is used, it takes the following three steps to compute p∗12.

Step 1. Define random variable S12 := S1 + S2. Compute the distribution of S12, denoted
by p12. This is not a uniform distribution.

p12(s) := Pr(S = s) =

∫ u1+u2

0

p1(z − y)p2(y)dy = · · · =


s

u1u2
, s ∈ [0, u1]

1
u2
, s ∈ [u1, u2]

u1+u2−s
u1u2

, s ∈ [u2, u1 + u2].

3



Step 2. Compute the expected profit as a function of S12, which is

ES12

(
(p12 − c12)δbuy

)
=

(∫ u1

0

s

u1u2
+

∫ u2

u1

1

u2
+

∫ u1+u2

u2

u1 + u2 − s
u1u2

)
(p12 − c12)δp12≤s12ds12

= · · · = (p12 − c12)×


1− p2

12

2u1u2
, p12 ∈ [0, u1]

1− p12

u2
+ u1

2u2
, p12 ∈ [u1, u2]

(u1+u2−p12)
2

2u1u2
, p12 ∈ [u2, u1 + u2].

For p12 6∈ [0, u1 + u2], we have ES12

(
(p12 − c12)δbuy

)
≤ 0 as long as c12 ≥ 0.

Step 3. Over each of the intervals, maximize the expected profit. That is to find the profit
maximizer p∗12 within each of the intervals.

For p12 ∈ [0, u1], setting the derivative of (p12 − c12)(1− p2
12

2u1u2
) to 0 yields

p∗12 =
1

3

(
c12 +

√
c212 + 6u1u2

)
.

Draw the curve or check the second derivative, and it is easy to see the above p∗12 is a
maximizer. From p∗12 ≤ u1, we get c12 ≤ 3

2u1 − u2, which is the condition under which the
above p∗12 is the maximizer of the expected profit.

Using similar steps, we obtained p∗12 in the other two cases and their corresponding intervals
of c12.

3. If you must choose between selling Items 1 and 2 separately and selling them in a bundle,
which one do you choose? Is one strategy always better than the other? Why?

Answer: Neither strategy is always better than the other.

To establish this claim, it is sufficient to use a pair of examples, one showing one strategy
better than the other, and the other showing the other way around. There are many such
examples, so we do not specify one.
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Problem 2:

a. The attached figure is an undirected graph. The circled numbers represent the nodes, and the
numbers along the edges are their lengths (symmetrical in both directions).
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An Alibaba Hema Xiansheng carrier starts at pointA and will pick up three orders from merchants
B1, B2, B3 and deliver them to three customers C1, C2, C3, respectively. The carrier drives a
scooter with a trunk that holds at most two orders at any time. All the orders have equal size.

Find the shortest travel route that starts at A and ends at the last delivery. To simplify this
question, assume no waiting time during each pickup and delivery.

Answer: The shortest travel distance is 16, attained by the carrier taking the following stops:

A B2  C2  B1  B3  C3  C1.

There are two slightly different routes with the same length of 16:

Route 1:

2(A)→ 6→ 7(B2)→ 8→ 11(C2)→ 8→ 3(B1)→ 4(B3)→ 15→ 14→ 13(C3)→ 12(C1);

Route 2:

2(A)→ 6→ 7(B2)→ 10→ 11(C2)→ 8→ 3(B1)→ 4(B3)→ 15→ 14→ 13(C3)→ 12(C1).

Either route will receive the full points.

Enumerating all the full routes and computing their lengths would be exhaustive. However, this
problem can be solved without a complete enumeration because the graph is a planar graph and
the edge lengths are such that the travel direction is always with 90 degrees of the destination.
This means, the shortest path between any two nodes is easy to find.

To solve this problem by hand, one can first guess a good (not necessarily optimal) sequence out
of {B1, C1, B2, C2, B3, C3} and calculate its travel distance. Indeed, there are several sequences
that all lead to a distance of 17. If you get a slightly higher one, it is fine. The distance
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becomes an upper bound of the shortest distance. Then, start enumerating all the sequences
from {B1, C1, B2, C2, B3, C3} but eliminate those once a part of their total distance reaches 17.
When you find a route with distance 16, it becomes the new upper bound. This procedure is
called branch and bound.

b. This question is unrelated to the graph shown in part a; instead, we consider a general graph of
many nodes and edges. Suppose that the carrier just picked up an order (we call it the original
order) and will travel through the edges e1, e2, . . . , em in the graph to deliver this original order.
When s/he travels through an edge e, s/he may pick up a new order for the same destination
from a merchant located somewhere on this edge, at probability Pe ∈ [0, 1]. Such probabilities
corresponding to the edges e1, e2, . . . , em are P1, P2, . . . , Pm. We ignore the probability of two or
more such new pickups on each edge e as they tend to be very small.

What is the expected number of new order(s) for the same destination that this carrier can pick
up over the given route (disregarding the trunk capacity)?

What is the probability that s/he picks up at least one new order for the same destination over
the given route?

Answer: For the 1st question, P1 +P2 + · · ·+Pm. Let ui ∈ {0, 1} be the number of pickup
over edge ei, for i = 1, . . . ,m. We can get our answer from

E (u1 + u2 + · · ·+ um) = E(u1) + E(u2) + · · ·+ E(um) = P1 + P2 + · · ·+ Pm.

For the 2nd question, 1− (1−P1)(1−P2) . . . (1−Pm). Here, (1−Pi) is the probability of no
pickup over ei and, by statistical independence, (1−P1)(1−P2) . . . (1−Pm) is that of no pickup
over the entire route, so 1 minus this product is the probability of picking up at least one order.

Alternatively, one can use conditional probability to obtain the recursion:

P1 + (1− P1)Pr(at least one new pickup after e1)

= P1 + (1− P1)
(
P2 + (1− P2)Pr(at least one new pickup after e2)

)
= . . .

= P1 + (1− P1)
(
P2 + (1− P2)

(
P3 + . . . (Pm−1 + (1− Pm−1)Pm))

))
.

This recursion is also a right answer.

Both of the above answers are also equal to

m∑
k=1

(−1)k+1
∑

distinct i1,...,ik∈{1,...,m}

Pi1Pi2 . . . Pik

 .

c. This question is a followup of part b. In this question, we no longer fix the route in part b but
find one to maximize the carrier’s profit. Suppose that the carrier receives a fixed reward of r
for each delivery and spends `, which equals the total lengths of the edges that s/he travels from
pickup to delivery. In total, s/he makes a profit of r − ` on this delivery. (We have set the cost
factor of travel distance to 1, for simplicity.)

Suppose that the carrier just picked up the original order and has this order only. What is his/her
optimal route assuming the scooter’s trunk has a capacity of 2 orders? You shall consider both
the travel distance as a cost and the possible additional profit of r for picking up a new order.
Because any new order has the same destination, its travel cost is ignored. Also, suppose that
0 ≤ Pe ≤ min{`e/r, 1}, where `e is the length of edge e and Pe is defined in part b.
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Answer: Assume, without loss of generality, there are T nodes and T is the desti-
nation node. First, from every node i, find the shortest path to T and its shortest
travel distance ci (if there is a tie between multiple paths with the same distance,
break it arbitrarily.) For i = T , we have cT = 0.

Next, using {c1, c2, . . . , cT }, compute the optimal expected future reward ri at every
node i, using the maximization formula (3) given below. For i 6= T , let ji be the
adjacent node of i that attains the maximum (again, if there is a tie, break it
arbitrarily.)

The carrier’s best route is decided at each node as follows: at node i, if the carrier
has yet to pick up an extra order, travel to ji; if the carrier has picked up an extra
order, then his/her trunk has reached the maximum capacity, so follow the shortest
path from i to T .

Note that the above route is not predetermined but decided as the carrier travels. In other word,
it is a strategy or policy. It is better than following any predetermined route because the best
way depends on whether an extra pickup is made or not.

When the carrier is at a node i and has not made a second pickup, deciding where the carrier
should go uses the expectation of the “profit to go”, which further depends on both pickup
probabilities and travel distance to T .

Define ri as the optimal expected future profit at node i before an extra pickup. For i = T , we
let rT = r, which is the fixed reward. Suppose we have calculated rj for the adjacent nodes of i.
At i, if we travel to the adjacent node j, then the expected future profit becomes:

• (2r − cj)− `(i,j), if a pickup occurs over (i, j), happening with probability P(i,j);

• rj − `(i,j), if a pickup does not occurs over (i, j), happening with probability 1− P(i,j),

where `(i,j) is the length of edge (i, j). The maximum over all the adjacent nodes is

ri = max
j is adjacent to i

{
P(i,j)((2r − cj)− `(i,j)) + (1− P(i,j))(rj − `(i,j))

}
= max

j is adjacent to i

{
(1− P(i,j))rj + P(i,j)(2r − cj)− `(i,j)

}
. (3)

This is known as the Bellman equation.

Given rT = r and (3), we can compute {ri} using either dynamic programming, or more specifi-
cally for graphs, Bellman Ford’s algorithm or Dijkstra’s algorithm (see the justification below).
They all start from rT = r and iteratively determine the elements of {ri}.
The condition Pe ≤ `e/r, or rPe ≤ `e, avoids the presence of any “positive reward cycle”, which if
exists would give the carrier the motivation to cycle around to increase his/her expected reward
until an extra order is finally picked up, which is unrealistic.

Note that, Dijkstra’s algorithm, which students tend to use over the other choices, requires a
“nonnegative edge length” condition. So, if one applies it to compute {ri}, they should verify
that condition. For our problem, that is to show

(1− P(i,j))rj + P(i,j)(2r − cj)− `(i,j) ≤ rj . (4)

Under the problem assumption Pe ≤ `e/r, this condition indeed holds. Let us see why. Since
the carrier can do no worse than traveling along the shortest path to T (rather than choosing a
node that maximizes the expected profit), we have

r − cj ≤ rj ,
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which yields the second inequality in

P(i,j)r + (P(i,j)r − `(i,j)) ≤ P(i,j)r ≤ P(i,j)(cj + rj),

where the first inequality follows from the problem assumption P(i,j)r ≤ `(i,j). We get (4) by
combining the inequalities above.
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Problem 3:

a. Professor Ma has formulated n different but equivalent statementsA1, A2, . . . , An. Every semester,
he advises a student to prove an implication Ai ⇒ Aj , i 6= j. This is the dissertation topic of
this student. Every semester, he has only one student, and we assume that this student finishes
her/his dissertation within the semester. No dissertation should be a direct logical consequence
of previously given ones. For example, if Ai ⇒ Aj and Aj ⇒ Ak have already been used as
dissertation topics, Professor Ma cannot use Ai ⇒ Ak as a new dissertation topic, as the impli-
cation follows from the previous dissertations. What is the maximal number of students that
Professor Ma can advise?

Answer: We will first construct an answer with 1
2 (n+ 2)(n− 1) students. Then, we will show

this is the best possible answer. We also present an alternative constructive proof that yields
1
2 (n+ 2)(n− 1).

Construction. First, (n − 1) students sequentially prove A1 ⇒ Ai for i = 2, . . . , n. Then,
(n−2) students sequentially prove A2 ⇒ Ai for i = 3, . . . , n. Continue this until 1 student proves
An−1 ⇒ An. Note that all implications proven so far are valid these and have the form Ai ⇒ Aj

for i < j. Next, (n − 1) students sequentially prove An ⇒ An−1, An−1 ⇒ An−2, · · · , A2 ⇒ A1,
which are also valid theses. The total number of theses is(

(n− 1) + (n− 2) + · · ·+ 1
)

+ (n− 1) =
1

2
n(n− 1) + (n− 1) =

1

2
(n+ 2)(n− 1).

Let f(k) := 1
2 (k + 2)(k − 1).

Proof of optimality. Consider a graph G = (N,E) with nodes N = {1, 2, . . . , n} and directed
edges E = {(i, j) | Ai ⇒ Aj has been shown}. Completing a thesis, i.e., proving an implication,
means adding an edge to E.

Define E′ := {(i, j) | Ai ⇒ Aj and Aj ⇒ Ai have been shown} ⊆ E be the set of “dual edges.”
The subgraph G′ = (N,E′) has at most 2(n−1) directed edges; otherwise, there must be a cycle
of dual edges, which contains invalid theses.

G has at most n(n − 1)/2 pairs of nodes. Remove the pairs of nodes with the dual edges, and
as we have argued, there are at most 2(n − 1) directed edges and thus at most (n − 1) such
pairs, leaving us with n(n− 1)/2− (n− 1) = (n− 2)(n− 1)/2 pairs of nodes with either one-way
edges or no edge in between. In other words, there are at most (n− 2)(n− 1)/2 one-way edges.
Therefore, adding the maximal numbers of one-way and dual edges gives us

(n− 2)(n− 1)/2 + 2(n− 1) =
1

2
(n+ 2)(n− 1) = f(n).

Another approach that is a constructive proof. Consider a graph G = (N,E) with nodes
N = {A1, A2, . . . , An} and directed edges E = {(Ai, Aj) | the statementAi ⇒ Aj has been shown}.
Completing a thesis Ai ⇒ Aj means adding the directed edge (Ai, Aj) to E.

We say Ai implies Aj and write it as Ai  Aj if E contains a path (a succession of head-to-tail
connected edges) from Ai to Aj .

We say S ⊆ N is a max equivalent class (MEC) if Ai  Aj , for all i, j ∈ S, and any larger
S′ ⊃ S does have this property. By this definition, if Ai  Aj and j ∈ S, then we have Ai  Ak

for all k ∈ S; hence, we write this as Ai  S. Similarly, if Ai  Aj for some i ∈ S, we write
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S  Aj . Also, if S1, S2 are two distinct MECs and Ai  Aj for some i ∈ S1, j ∈ S2, then we
write S1  S2.

For any MEC S and i 6∈ S, we do not have Ai  S and S  Ai due to the maximality of S.

Depending on E, the set N may be partitioned to the largest MEC, N itself, and at most
n individual distinct MECs, {1}, {2}, . . . , {n}. Each thesis may, but not necessarily, join two
distinct MECs into their union MEC. Each thesis cannot join three or more distinct MECs into
the union MEC.

Therefore, our problem reduces to finding the maximal sequence of valid theses that turn the n
individual MECs {1}, {2}, . . . , {n} into an MEC of size n.

For integer x > 0, let f(x) be the maximal number of sequentially valid theses that generates an
MEC of size x, starting from x individual distinct MECs. Clearly, f(1) = 0.

For any n ≥ 2, one must form an MEC of size n by joining two MECs of sizes x and n− x, for
some x ∈ {1, . . . , n− 1}. Before the two MECs are joined, there are at most x(n− x) same-way
edges between them, and an opposite-way edge completes their joining. Therefore,

f(n) = max
x∈{1,...,n−1}

{f(x) + f(n− x) + x(n− x) + 1}.

Starting from f(1) = 0, we can use this formula to compute f(2), f(3), . . . . Calculation yields

f(n) =
1

2
(n+ 2)(n− 1).

For each n, the term that attains the maximum (say at x = xn) implies an optimal construction:
given two subsets of nodes of sizes xn and y − xn, first add xn(y − xn) edges from one subset
(either one) to the other, then add edges within each of the two subsets to turn them into MECs,
and finally add one opposite-way edge. Those xn(y − xn) edges need to be added first since,
recall, given two MECs S1, S2, adding an edge from one to the other, say S1 to S2, establishes
Ai  Aj for all i ∈ S1, j ∈ S2 and, therefore, prevents the adding of all other edges like (Ai, Aj).

Interestingly, every x = 1, 2, . . . , n − 1 attains the maximum, implying largely many ways to
construct an MEC of size n by f(n) theses.
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b. Let H be an n × n matrix whose entries are 1 or −1 and whose rows are mutually orthogonal
(that is, the standard inner product of every pair of different rows of H is 0). Suppose H has an
a× b submatrix whose entries are all 1. Show that ab ≤ n.

Answer: This question is taken from Putnam 2005, question A4.

It is a direct consequence of the following basic result of matrix: For any matrix A of a rows and
b columns, we have

rank(A) · ‖A‖2 ≥ ‖A‖2F , (5)

where ‖A‖ is the spectral norm of A and ‖A‖F is the Frobenius norm of A.

Since H in our question is orthogonal and every row of it has norm
√
n, we have ‖H‖ =

√
n. For

any submatrix A of H,
√
n = ‖H‖ ≥ ‖A‖. When the entries of A are all 1 and A has a rows and

b rows, we have ‖A‖F = ab and rank(A) = 1. Therefore,

n ≥ rank(A) · ‖A‖2 ≥ ‖A‖2F = ab.

The question also appears as, for example, Corollary 2.2 in Lokam’s “Spectral methos for matrix
rigidity ...” J. Computer and System Sciences 64, 449–473, 2001.

c. Let G be a group with unit element denoted by e. Define the following subset of G:

F :=
{
h ∈ G | hm = e for some integer m ≥ 1

}
.

Show that if F is finite, then there exists an integer n ≥ 1 such that

gnh = hgn for all g ∈ G, h ∈ F.

Proof: Take g ∈ G. Let mh be such that hmh = e. Let Fg := {ghg−1 : h ∈ F}. Since
(ghg−1)mh = ghmhg−1 = gg−1 = e, we have g−1hg ∈ F by the definition of F . Therefore,
Fg ⊆ F and |Fg| ≤ |F |. The same holds for Fg2 , Fg3 , . . .. This and the finiteness of F imply
that, for each h, there exists `h ≤ |F | such that g`hhg−`h = h. Now take n = |F |! (the factorial
of |F |). For any h ∈ F , n is a multiple of `h, that is, n = lh · kh, so from g`hhg−`h = h, we apply
cancellations as

gnhg−n = (g`h)khh(g−`h)kh = (g`h)kh−1h(g−`h)kh−1 = · · · = g`hhg−`h = h,

from which we get gnh = hgn.
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